论文部分内容阅读
鉴于传统方法用于高维复杂函数优化很容易陷入局部极小,为此提出了一类通用、易实现、具有全局优化特性的混合优化算法(CHADE算法).该算法将混沌优化的随机性与差分进化算法(DE算法)相结合,利用混沌扰动算子增强算法的局部搜索能力;同时,随着搜索过程的进行随机地调整缩放因子和差分进化模式.多个典型高维复杂函数的数值仿真结果表明:CHADE算法寻优效率高、收敛速度快,尤其是具有避免局部极小的能力,其优化性能优于单一的DE算法.