【摘 要】
:
贝尔电话实验室发明了一种气体光激射器。它发射出至今在红外波段观察到的最高连续功率。电子学系统的研究实验室的贝特尔(C. Κ. N. Patel)设计了这一在10.6微米处输出为16瓦的光激射器。
论文部分内容阅读
贝尔电话实验室发明了一种气体光激射器。它发射出至今在红外波段观察到的最高连续功率。电子学系统的研究实验室的贝特尔(C. Κ. N. Patel)设计了这一在10.6微米处输出为16瓦的光激射器。
其他文献
探索利用大模场光子晶体光纤产生大功率、高光束质量的超连续谱。采用分步傅里叶方法求解广义非线性薛定谔方程(GNLSE), 模拟了光脉冲在大模场光子晶体光纤中非线性传输和超连续谱的产生过程。着重分析了光子晶体光纤长度和抽运脉冲的峰值功率、啁啾等对超连续谱产生的影响, 讨论了大模场光子晶体光纤中光谱的非线性展宽机制。发现可将超连续谱产生过程分为初始展宽、剧烈展宽和饱和展宽三个阶段。合理选择光纤长度, 使产生的超连续谱处于剧烈展宽阶段时输出, 既能够得到较宽的光谱, 又能够保证较高的效率。抽运峰值功率对超连续谱的
研究了在抽运激光光斑面积不同的情况下,两种小孔径光电导天线各自的辐射特性,并且将它们辐射出的太赫兹(THz)波进行了对比。目的在于找到提高小孔径光电导天线发射效率的方法,为研制高效率的太赫兹波辐射源提供参考依据。利用太赫兹时域光谱(TDS)技术测量了光电导天线辐射的太赫兹脉冲,得到了时域发射光谱,通过快速傅里叶变换得到相应的频域光谱。结果表明,两种光电导天线辐射的太赫兹信号强度都随着抽运激光光斑直径的减小而增强;随偏置电压的增大而增强;随着抽运激光功率的增大出现了先增强后饱和的现象。在偏置电压、抽运激光光
本文应用传输矩阵的方法对受激布里渊散射位相共轭腔输出的空间特性进行了分析及编程计算,给出了各种参数下受激布里渊散射-位相共轭腔的传输光束轮廓图,同时给出了实验结果与之相比较.提出了设计受激布里渊散射共轭腔时应注意的问题及几种实用的受激布里渊散射位相共轭腔的腔型.
针对光伏阵列阴影及树叶等遮挡识别的准确率有待提高的问题,提出一种基于选择增强的图像分割算法。该算法在HSV颜色空间对图片进行增强处理,得到“苔衣图像”,达到遮挡变色的效果,提高遮挡部分与未遮挡部分的对比度。最后对“苔衣图像”进行图像分割,得到遮挡轮廓。结果表明,所提基于选择增强的图像分割算法得到的阴影和附着遮挡物(树叶等)的位置、面积更加准确,便于清除遮挡,同时也为光伏阵列局部阴影下的精准建模提供基础。
因光纤法布里-珀罗(F-P)传感器的干涉光信号频谱具有稀疏性, 求解腔长时, 传统的快速傅里叶变换(FFT)算法需要计算整个频率范围内的频谱成分, 计算速度较慢。稀疏快速傅里叶变换(SFFT)算法只需计算干涉光信号的主要频谱成分, 通过频谱重排、窗函数滤波、频域降采样, 以及循环定位与估值, 能快速地计算出信号频谱中K个极大的傅里叶系数, 从中找出腔长对应的频率, 解调出腔长。该算法结构简单, 时间复杂度低。通过分析光纤F-P传感器腔长解调系统的实际干涉光信号, 验证解调结果的准确性, 以及相比FFT算法
We study the parametric amplification of electromagnetically induced transparency-assisted Rydberg six- and eight-wave mixing signals through a cascaded nonlinear optical process in a hot rubidium atomic ensemble both theoretically and experimentally. The
Single-frequency 1319-nm laser was obtained by using a laser-diode-pumped monolithic Nd:YAG crystal with a non-planar ring oscillator (NPRO). When the NPRO laser was pumped by an 800-μm fiber coupled laser diode, the output power of the single-frequency 1
Photodynamic therapy (PDT) of cancer is a two-step drug-device combination modality, which involves the topical or systemic administration of a photosensitizer followed by light illumination of cancer site. In the presence of oxygen molecules, the light i