论文部分内容阅读
提出了一种多输入多输出分支动态递归神经网络模型,利用梯度下降法推导了网络权值调整公式。该模型针对结构控制中结构状态变量、控制变量和外激励荷载对结构的响应有不同的影响,采用分支输入递归处理,不但结构响应预测精度好,而且大大提高了动态网络的学习和训练效率。应用该模型对线性结构和非线性结构在变阻尼控制和外荷载激励下结构的响应进行了数值仿真,表明所提的动态递归神经网络可以达到较高的预测精度。该模型为利用神