论文部分内容阅读
在对传统的多类分类算法研究的基础上,针对基于二值分类器的多分类器构造算法存在的预测精度低、训练时间长的缺点,提出了一种基于SVM的组合回归机构造多类分类器的算法。该算法解决了二值分类器方法中存在的信息丢失问题,同时避免了由于参数调整而造成的计算代价过大的问题。实验结果表明:新的SVM多分类算法大大降低了计算代价,提高了运行效率和预测的精度,减少了运行时问。