论文部分内容阅读
研究泵内流场尤其是混相流流场,是改善抽油泵性能的关键所在。石油大学(北京)为此研制了一套气液两相流液压抽油泵模拟试验装置。这种装置由单相流试验装置和混相流试验装置构成,前者能比较真实地模拟井下的各种工况和抽油泵内液体的流动状态,后者可模拟不同的油气比。为了在不干扰流场的条件下定量完成流场的瞬态测量,给出平面流场的速度矢量图和旋度场等揭示流场瞬态流动结构的图像处理结果,采用了具有测量精度高、空间分辨率强和动态响应快等特点的粒子成像测速(PIV)先进技术
Studying the pump flow field, especially the mixed-phase flow field, is the key to improving the pump performance. For this purpose, the University of Petroleum (Beijing) developed a set of simulation test devices for a gas-liquid two-phase flow hydraulic pump. The device consists of a single-phase flow test device and a mixed-phase flow test device. The former can simulate various working conditions in the downhole well and flow state of liquid in the oil pump more accurately, the latter can simulate different oil-gas ratio. In order to quantitatively complete the transient measurement of the flow field without disturbing the flow field, the image processing results of the velocity vector and the curl field of the planar flow field are given to reveal the transient flow structure of the flow field. , Strong spatial resolution and fast dynamic response characteristics of particle imaging speed (PIV) advanced technology