论文部分内容阅读
同时定位与建图(SLAM)是智能机器人实现真正自治的必要前提,是一个比单独研究定位或者建图更加困难的课题。该文将基于SUT变换的RBUKF滤波器应用于平面静态环境下的同时定位与建图算法,它能够在同样计算复杂度的情况下,避免基于扩展卡尔曼滤波器(EKF)SLAM算法由于线性化误差大导致滤波器发散,从而出现建图错误的缺点。基于公共数据集的实验表明该方法估计的最终地图比EKF的方法精度高。