论文部分内容阅读
设(K,M,H)是上三角双模问题,Brüstle和Hille证明了(K,M,H)的矩阵范畴Mat(K,M)的投射生成子P的自同态代数的反代数A是拟遗传代数,而且代数A的Δ好模范畴与Mat(K,M)等价.本文基于双模问题的tame定理,证明了如果由上三角双模问题所对应的拟遗传代数A是Δ-tame表示型的,则F(Δ)具有齐次性质,即F(Δ)中的几乎所有的模都同构于它的Auslander-Reiten变换;进一步地,如果(K,M,H)是上三角双分双模问题,则A是Δ-tame表示型的当且仅当F(Δ)具有齐次性质.