Ninjurin-1: a biomarker for reflecting the process of neuroinflammation after spinal cord injury

来源 :中国神经再生研究(英文版) | 被引量 : 0次 | 上传用户:maming5201ww
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Previous studies have shown that Ninjurin-1 participates in cell trafficking and axonal growth following central and peripheral nervous system neuroinflammation. But its precise roles in these processes and involvement in spinal cord injury pathophysiology remain unclear. Western blot assay revealed that Ninjurin-1 levels in rats with spinal cord injury exhibited an upregulation until day 4 post-injury and slightly decreased thereafter compared with sham controls. Immunohistochemistry analysis revealed that Ninjurin-1 immunoreactivity in rats with spinal cord injury sharply increased on days 1 and 4 post-injury and slightly decreased on days 7 and 21 post-injury compared with sham controls. Ninjurin-1 immunostaining was weak in vascular endothelial cells, ependymal cells, and some glial cells in sham controls while it was relatively strong in macrophages, microglia, and reactive astrocytes. These findings suggest that a variety of cells, including vascular endothelial cells, macrophages, and microglia, secrete Ninjurin-1 and they participate in the pathophysiology of compression-induced spinal cord injury. All experimental procedures were approved by the Care and Use of Laboratory Animals of Jeju National University (approval No. 2018-0029) on July 6, 2018.
其他文献
The term microglia refers to the group of resident brain immune-cells that are responsible, mainly, for the immune response and the homeostasis of the brain. Un
期刊