论文部分内容阅读
为克服人工蜂群算法原有搜索策略存在探索能力强而开采能力弱的缺点,受差分进化算法的启发,提出了一种新的搜索策略,在种群最优解的附近产生新的候选位置,有助于提高人工蜂群算法的开采能力。同时,为了平衡算法的探索和开采能力,将种群中的个体随机分成两组,每组采用不同的搜索策略同时寻优。对6个基准测试函数进行仿真的结果表明,改进的搜索算法相比基本人工蜂群算法能有效地改善寻优性能,增强算法摆脱局部最优的能力。