高斯函数及其应用

来源 :数学通讯 | 被引量 : 0次 | 上传用户:aiwoba9982
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高斯函数[x]是一个特殊的函数,在数学竞赛中经常出现,在近几年高考试题中也偶尔出现.本文介绍高斯函数的定义、基本性质和典型问题,供读者参考.设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数(这一函数最早由高斯引入,故得名),也叫取整函数.任意实数x都能写成整数部分与非负纯小数部分之和x=[x]+r(0≤r<1),这里[x]为x的整数部分,r=x-[x]为 Gaussian function [x] is a special function that often appears in math competitions, and also appears occasionally in the entrance exam questions in recent years.This paper introduces the definition, basic properties and typical problems of Gaussian function, for readers' reference. Let x∈R , [X] is the largest integer not exceeding x, then y = [x] is called a Gaussian function (this function was originally introduced by Gauss, hence the name), also called the rounding function. Any real number x can be written as an integer X = [x] + r (0 ≦ r <1), where [x] is the integer part of x and r = x- [x] is the sum of the part and the nonnegative fractional part
其他文献