基于最小回环检测的多车协同SLAM框架

来源 :电子学报 | 被引量 : 0次 | 上传用户:suojianpku798
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了提升自动驾驶车辆的感知效率和准确率,解决协同感知算法中对协同条件的限制和多源数据融合等问题,本文引入基于激光雷达的即时定位与建图(Simultaneous Localization and Mapping,SLAM)算法,提出面向自动驾驶的多车协同SLAM框架.首先,车辆运行单车SLAM,构建本地约束并共享地图和位姿数据.同时车辆接收并处理其他车的数据,若其他车辆与本车已建立坐标系转换关系则直接完成数据融合,否则基于重叠区域相似点云配准解算多车坐标系转换关系.采用图的连通分支和生成森林理论跟踪数据融合情况并构建多车回环约束,基于通用图优化(General Graph Optimization,G2O)理论对全局地图优化.真实场景与KITTI数据集的实验结果表明,本文的框架无需构建包含所有车辆相对位姿的全局坐标系或满足多车相遇等约束条件,即可实现多车协同SLAM,并在SLAM的效率和准确率等指标上具有优势.
其他文献
为了解决语音识别模型在识别中文语音时鲁棒性差,缺少语言建模能力而无法有效区分同音字或近音字的不足,本文提出了融合语言模型的端到端中文语音识别算法.算法建立了一个基于深度全序列卷积神经网络和联结时序分类的从语音到拼音的语音识别声学模型,并借鉴Transformer的编码模型,构建了从拼音到汉字的语言模型,之后通过设计语音帧分解模型将声学模型的输出和语言模型的输入相连接,克服了语言模型误差梯度无法传递给声学模型的难点,实现了声学模型和语言模型的联合训练.为验证本文方法,在实际数据集上进行了测试.实验结果表明,