论文部分内容阅读
距离与差异性度量是聚类分析中的基本概念,是许多聚类算法的核心内容。在经典的聚类分析中,度量差异性的指标是距离的简单函数。该文针对混合属性数据集,提出两种距离定义,将差异性度量推广成为距离、类大小等因素的多元函数,使得原来只适用于数值属性或分类属性数据的聚类算法可用于混合属性数据。实验结果表明新的距离定义和差异性度量方法可提高聚类的质量。