论文部分内容阅读
基于稀疏性的高光谱解混是近年来高光谱混合像元分解的研究热点。主要研究了L1正则化的高光谱混合像元分解算法。首先分析了L1正则化的三种解混模型,即无约束、非负约束和全约束模型;然后给出了三种模型对应的数值求解算法;最后,采用模拟的和真实的高光谱数据进行实验,比较了三种高光谱混合像元分解算法的效果。实验结果表明:三种模型均具有很好的高光谱混合像元分解精度(SRE),其中全约束模型最好,非负约束模型次之,无约束模型最差;全约束模型在信噪比低和端元数多的情况下,仍然获得较高的SRE。