论文部分内容阅读
针对目前SAR(Synthetic Aperture Radar)图像中样本人工标记成本高、传统算法分类识别较低的情况,提出一种基于改进半监督阶梯网络(Semi⁃supervised Ladder Network,SSLN)的SAR图像分类识别方法.首先在原SSLN模型的解码器网络中使用卷积神经网络代替全连接层,对编码器输出的每层数据进行全局深度特征提取,这样做有利于图像降噪,实现对输出数据的重构.其次,为解决SAR图像各类数据集分布不均衡的问题,同时提高网络的泛化性能,对阶梯网络训练层中各类别损失函数的