论文部分内容阅读
目的研究储层精细评价技术中的储层参数井间预测方法。方法基于人工神经网络模型,结合油藏微相研究成果,采用井位和微相信息作为神经网络的输入信息,采用神经网络模型对储层参数进行空间预测。结果利用空间分散井位点的孔隙度资料和地区沉积微相信息,对孤岛油田渤21断块油藏进行井间孔隙度内插预测,其井间参数的预测精度得到明显提高,为油藏建模提供了可靠的基础。结论基于神经网络模型的井间参数预测方法,可以为储层精细评价提供高质量的油藏地质模型。