论文部分内容阅读
基于用户的协同过滤推荐算法在进行近邻用户的筛选时以用户之间相似度的计算结果作为依据,数据量的增大加剧了数据的稀疏程度,导致了计算结果的准确性较差,影响了推荐准确度.针对该问题本文提出了一种基于用户联合相似度的推荐算法.用户联合相似度的计算分为用户对项目属性偏好的相似度和用户之间人口统计学信息的相似度两个部分.用户的项目属性偏好引入了LDA模型来计算,计算时评分数据仅作为筛选依据,因而避免了对数据的直接使用,减缓了稀疏数据对相似度计算结果的影响;用户之间人口统计学信息的相似度则在数值化人口统计学信息之后通过