论文部分内容阅读
针对复杂背景及遮挡等引起目标跟踪性能显著下降的问题,提出一种目标跟踪方法。该方法首先根据目标时空局部相关性获取目标及背景样本。而后建立字典学习模型:基于误差项捕获遮挡等产生的异常值,利用极大极小凹加函数惩罚稀疏编码及误差矩阵,且对字典施加不一致约束项以提高字典的鲁棒性和判别性。针对所构建的非凸字典学习优化问题,利用优化最小化方法对其求解以获得较好的收敛性。最后,由所得判别字典计算候选目标的重构误差以构建目标观测模型,并基于贝叶斯推理框架实现目标精确跟踪。仿真结果表明,与现有主流算法相比,所提方法在复