论文部分内容阅读
根据神经网络独特的容错、联想、推测、自适应、自学习等优点,针对BP网络在故障诊断应用中收敛速度慢等不足,研究了基于RBF神经网络的智能故障诊断方法。该诊断方法只需要足够的具有代表性的故障样本用以训练神经网络,然后将归一化的故障信息输入给训练好的神经网络,根据其输出结果就可以判断发生的故障类型。利用该诊断方法,对发动机转子系统故障诊断进行了仿真,仿真结果表明,基于RBF神经网络的智能故障诊断方法效果良好。