论文部分内容阅读
前向后向匹配追踪(FBP)算法作为一个新颖的两阶段贪婪逼近算法,因为较高的重构精度和不需要稀疏度作为先验信息的特点,受到了人们的广泛关注。然而,FBP算法必须运行更多的时间才能得到更高的精度。鉴于此,该文提出加速前向后向匹配追踪(AFBP)算法。该算法利用每次迭代中候选支撑集的信息,实现对已删除原子的再次加入,以此减少算法迭代次数。通过不同非零项分布的稀疏信号和稀疏图像的仿真结果表明,相对于FBP算法,该文提出的方案在不降低重构精度的同时,大幅降低了算法运行时间。