论文部分内容阅读
电力负荷是具有一定的周期性和随机性的非平稳时间序列,传统的预测方法是建立在负荷是平稳序列的前提下,难以精确的预测。为了进行有效的预测,提高预测精度,提出将经验模式分解EMD(Empirical Mode Decomposition)和最小二乘支持向量机LS—SVM(Least Square Support Vector Machine)相结合对短期负荷进行预测。首先,运用EMD将负荷序列自适应地分解成一系列不同尺度的本征模式分量IMF(intrinsic mode function),分解后的分量突出了原