论文部分内容阅读
提出了一种处理海量的不完备决策表的方法。将基于互信息的属性重要度作为启发式信息,利用遗传算法对不完备的原始决策表中的条件属性进行约筒,形成包含missing值的决策表,称为优化决策表。利用原始决策表自身的信息,通过属性扩展,从优化决策表中抽取一致性决策规则,而无须计算missing值。该方法在UCI的8个数据集上的实验结果优于EMAV方法,是一种有效的从海量不完备决策表中抽取规则的方法。