信息系统迁移上云与异常检测方法

来源 :现代计算机 | 被引量 : 0次 | 上传用户:ZZ2077
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文提出了基于微服务架构的重大信息系统迁移上云方案,给出了传统架构到云环境下架构各类组件映射关系和解决方法,通过技术架构转换实现传统信息系统业务迁移到云平台体系,进而实现重要系统的一键部署、弹性伸缩、灰度发布以及故障自愈,通过实践验证了基于微服务改造迁移上云的可行性和可靠性.
其他文献
基于大规模文本语料库的预先训练模型能够学习通用语义表征,再根据给定数据集进行微调可以显著提升预先训练模型在各类自然语言处理任务的性能.在这种“预先训练模型+微调策略”的模式下,数据特征来源的选择、模型速率的提升、微调策略的设计就显得尤为重要.本文重点介绍强力优化的语义表征模型RoBERTa、基于全词遮蔽的扩展模型RoBERTa-wwm-ext和基于知识蒸馏的压缩模型RBT3等预先训练模型,以及判别微调DF和倾斜的三角学习率STLR等微调策略.在公众留言分类实验中表明,相对仅选取“主题”作为数据特征来源,选
医疗分类问题作为数据挖掘在医学上的重要问题分支,旨在通过人工智能算法构建出分类决策模型以辅助临床诊断.为改善医疗分类模型的泛化能力,利用受限玻尔兹曼机有效的特征提取性能,提出一种改进回归权的深度置信网络结构并将其应用于医疗数据分类问题研究中.在三个UCI医疗数据集上分别基于改进网络构建出决策模型,并与原始网络结构进行对比.仿真结果表明,基于改进深度置信网络构建的决策模型取得了较为优异的性能.