Carbon-supported layered double hydroxide nanodots for efficient oxygen evolution:Active site identi

来源 :纳米研究(英文版) | 被引量 : 0次 | 上传用户:jmxhyundai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In this study,we developed a novel confinement-synthesis approach to layered double hydroxide nanodots (LDH-NDs) anchored on carbon nanoparticles,which formed a three-dimensional (3D) interconnected network within a porous carbon support derived from pyrolysis of metal-organic frameworks (C-MOF).The resultant LDH-NDs@C-MOF nonprecious metal catalysts were demonstrated to exhibit super-high catalytic performance for oxygen evolution reaction (OER) with excellent operation stability and low overpotential (~ 230 mV) at an exchange current density of 10 mA·cm-2.The observed overpotential for the LDH-NDs@C-MOF is much lower than that of large-sized LDH nanosheets (321 mV),pure carbonized MOF (411 mV),and even commercial RuO2 (281 mV).X-ray absorption measurements and density functional theory (DFT) calculations revealed partial charge transfer from Fe3+ through an O bridge to Ni2+ at the edge of LDH-NDs supported by C-MOF to produce the optimal binding energies for OER intermediates.This,coupled with a large number of exposed active sides and efficient charge and electrolyte/reactant/product transports associated with the porous 3D C-MOF support,significantly boosted the OER performance of the LDH-ND catalyst with respect to its nanosheet counterpart.Apart from the fact that this is the first active side identification for LDH-ND OER catalysts,this work provides a general strategy to enhance activities of nanosheet catalysts by converting them into edge-rich nanodots to be supported by 3D porous carbon architectures.
其他文献
Here,we report a strategy to deliver drug nanoparticles into cells with nucleus-targeting ability under a spatiotemporal control.The nanoparticles were constructed through self-assembly of photoresponsive prodrugs and free drugs.By incorporating a nucleus
Developing carbon-based electrocatalysts with excellent N2 adsorption and activation capability holds the key to achieve highly efficient nitrogen reduction reaction (NRR) for reaching its practical application.Here,we report a highly active electrocataly
Wearable biopotential sensing devices are essential to long-term and real-time monitoring of human health.Non-contact,capacitive sensing electrodes prevent potential skin irritations,and are thus beneficial for long-term monitoring.Existing capacitive ele
Spirothiopyran (STP) is particularly attractive when used as a mechanophore to endow polymers with both damage-signaling and self-reinforcing capacity.It is,however,not clear the actual force required to induce the cycloreversion of STP into ring-opened t
Design of metal-free photocatalysts with customized chemical structure and nano-architecture is promising for photocatalytic hydrogen peroxide (H2O2) production.Herein,for the first time,mesoporous resorcinol-formaldehyde (MRF) nanobowls with optimized be
Fluorinated porous organic networks (F-PONs) have demonstrated unique properties and applications,but approaches capable of affording F-PONs with high fluorine content and robust nanoporous architecture under metal-free and easy handling conditions are st
Cationic azole-based metal-organic frameworks (MOFs) with remarkable stability and unique pore environment have aroused great research interests.Meanwhile,flexible MOFs which can undergo pore-structure changes upon exposure to external stimuli are ideal m
It is challenging to develop an in vitro catalytic system to conduct natural surface-confined enzymatic reactions in a stable,efficient,and spatially defined manner.Here,we report that an artificial catalyst,which composes of trypsin and a calcium ion exc
Copper-hydrides have been intensively studied for a long time due to their utilization in a variety of technologically important chemical transformations.Nevertheless,poor stability of the species severely hinders its isolation,storage and operation,which
Introducing heating function to oil sorbents opens up a new pathway to the fast cleanup of viscous crude oil spills in situ.The oil sorption speed increases with the rise of the temperature,thus oil sorbents with high heating temperature are desirable.Bes