紫外衍射微透镜阵列的设计与制备

来源 :光学技术 | 被引量 : 0次 | 上传用户:danda333
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了提高紫外焦平面阵列的填充因子,可以通过微透镜阵列与紫外焦平面阵列的集成,以改善紫外焦平面阵列的探测性能。根据标量衍射理论设计了用于日盲型紫外焦平面阵列的128×128衍射微透镜阵列,其工作中心波长为350nm,单元透镜F数为F/3.56。采用组合多层镀膜与剥离的工艺方法制备了128×128衍射微透镜阵列,对具体的工艺流程和制备误差进行了分析,测量了衍射微透镜阵列的光学性能。实验结果表明:衍射微透镜阵列的衍射效率为88%,与理论值95%有偏差,制备误差主要来自对准误差和线宽误差。紫外衍射微透镜阵列具有均匀的焦斑分布,与紫外焦平面阵列单片集成能较好地改善器件的整体性能。 In order to improve the fill factor of the UV focal plane array, the micro lens array and the UV focal plane array can be integrated to improve the detection performance of the UV focal plane array. According to the scalar diffraction theory, a 128 × 128 diffractive microlens array designed for a solar - blind UV planar array is designed. The working center wavelength is 350nm and the F number of the unit lens is F / 3.56. The 128 × 128 diffractive microlens array was prepared by a combination of multilayer coating and stripping process. The specific process flow and fabrication error were analyzed. The optical properties of the diffractive microlens array were measured. The experimental results show that the diffraction efficiency of the diffractive microlens array is 88%, which deviates from the theoretical value of 95%. The preparation error mainly comes from the alignment error and linewidth error. UV diffracted microlens array has a uniform focal spot distribution, and monolithic integration with the UV focal plane array can better improve the overall performance of the device.
其他文献
提出了一种超短环形腔布里渊掺铒光纤激光器(BEFL),腔长仅为10m。该BEFL以4m长的普通掺铒光纤(EDF)为激光增益介质,腔外布里渊抽运光和980nm抽运光的注入在掺铒光纤中,分别引
频率稳定的激光器在精密计量、高分辨率光谱等许多领域具有重要的应用。使用KTP晶体将Nd:YAG激光器输出的激光(1064nm)倍频到532nm,采用波长调制吸收光谱技术获得吸收峰的一