一种视觉与惯性协同的室内多行人目标定位方法

来源 :武汉大学学报(信息科学版) | 被引量 : 1次 | 上传用户:beiwei72
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
多行人目标连续定位与跟踪是大型室内空间安全防护、应急疏散、位置服务等应用领域共同关注的问题。基于固定相机的视觉监测是室内空间人流探测与行人定位的重要方式。然而现有单目视觉行人探测存在行人漏检、易受视觉盲区影响、行人身份难以确定等问题。针对这些问题,提出了一种结合视觉信息与惯性信息的主被动协同定位方法。该方法首先利用视觉行人检测算法探测视频图像中的多行人目标位置,构建像素-世界坐标转换模型,实现行人的被动视觉探测与空间定位。同时,利用智能手机惯性传感器感知行人的运动行为。在此基础上,分别利用视觉和惯性
其他文献
为验证分析最新全球气压气温模型(GPT3模型)在中国区域的模型精度,以中国区域18个IGS站为例,分别利用全球大地测量观测系统(Global Geodetic Observing System, GGOS) Atmosphere机构提供的2015-2017年气象数据和国际卫星导航服务(International GNSS Service,IGS)数据中心提供的2015年对流层延迟数据对GPT3模型
建筑结构动态监测是重要建筑日常维护管理的重要工作之一,如何有效地采集、传输和管理时态建筑监测数据是其中难点。提出了一种面向实时动态监测的建筑信息模型,该模型实现了建筑物建筑信息模型(building information model, BIM)、实景三维模型与传感器网的融合,服务于建筑物几何、构造和运行状态信息的综合管理;建立了基于传感器网的建筑结构时态监测信息传输、管理框架与方法,包括各类传感
近年来,各类位置感知设备产生的轨迹数据被广泛应用于城市规划、智能交通、公共卫生、行为分析等各个领域,但是常规矢量表达方式及建立在其基础之上的分析算法的计算复杂度高,无法满足大规模轨迹数据的高时效性应用需求。针对上述问题,提出了基于地理格网模型的轨迹数据管理与分析框架,为轨迹数据挖掘的"表达-管理-分析-应用"全链条研究提供新的技术框架,主要包含地理格网模型、轨迹多尺度表达与组织、轨迹计算与分析、高