论文部分内容阅读
为了有效的进行刀具状态监测,采用小波神经网络的松散型结合对刀具进行故障诊断。通过小波变换提取刀具磨损声发射(AE)信号的特征.即对AE信号进行小波分解,提取了5个频段的均方根值作为神经网络的输入,来识别刀具磨损状态。试验表明,均方根值完全可以作为刀具磨损过程中产生AE信号的特征向量。仿真结果表明,基于小波神经网络的刀具故障诊断对刀具磨损状态的识别效率高.该方法是有效的。