基于MATLAB神经网络方法的多层砖房震害预测

来源 :西北地震学报 | 被引量 : 0次 | 上传用户:guqiurong
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
提出利用MATLAB人工神经网络工具箱建立基于贝叶斯正则算法的BP神经网络模型,以地震区多层砖房震害调查数据为因子的震害预测方法。神经网络模型输入震害因子包括建筑的层数、施工质量、房屋整体性等,输出值为建筑物在地震作用下的破坏程度。结果表明,本方法可以对多层砖房的震害样本进行预测并达到较理想的效果。 A BP neural network model based on Bayesian regular algorithm was established by using MATLAB artificial neural network toolbox and the earthquake damage prediction method based on the seismic damage survey data of multi-storey brick houses in seismic area was taken as a factor. The input seismic damage factors of neural network model include the number of building layers, construction quality, house integrity and so on. The output value is the degree of damage caused by the earthquake caused by the building. The results show that this method can predict earthquake damage in multi-story brick houses and achieve better results.
其他文献
目的:观察和分析人工股骨头置换术治疗高龄股骨颈骨折的效果.方法:对70岁以上高龄股骨颈骨折67例,施行了人工股骨头置换术.结果:67例平均随访1年10月,按美国Harris标准从疼痛
为比较不同秸秆类(芦苇秸秆、稻秸秆、麦秸秆)纤维对其制备复合材料性能的影响,以芦苇秸秆、稻秸秆、麦秸秆为填充材料,以聚氯乙烯(PVC)为基体材料,采用挤出成型工艺制备3种PVC/