液态金属微液滴脉动热管的传热性能

来源 :化工进展 | 被引量 : 0次 | 上传用户:mobydick2000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
利用室温液态金属和表面活性剂溶液混合工质的振荡运动,在脉动热管中形成液态金属微纳液滴分散的高热导率混合流体并提高其传热性能.本文将液态金属表面活性剂混合工质引入六弯管板式脉动热管中,在不同液态金属填充量和加热功率下开展可视化和传热性能实验.实验结果表明,液态金属在表面活性剂混合工质中通过振荡自分散成球形液滴且相互之间不易发生合并,并在表面活性剂工质中留下粒径在410~520nm的纳米颗粒.传热性能方面,液态金属填充量在20%~25%时,液态金属球形液滴的黏度高、质量大,会阻碍混合工质的振荡运动从而降低脉动热管的传热性能,填充量在5%~10%时,混合工质耦合了液态金属的高热导率特性,有效提高传热性能,热阻最多降低11.21%.
其他文献
为研究异形纤维排布方式对其过滤性能的影响,以矩形及交错排布为基础,在保持纤维体积分数不变的条件下,通过改变纤维的列间距调整阵列结构,运用CFD-DEM耦合方法对含尘空气通过具有不同异形纤维阵列结构的简化过滤器模型过程进行数值模拟.结果表明:当纤维的体积分数保持不变,交错纤维阵列较矩形阵列过滤效率高出35%,且对于颗粒的吸附力更强;而在交错阵列的基础上,调整列间距得到的前密阵列和后密阵列均可保持80%左右的过滤效率,且不影响颗粒吸附力的大小,但前密阵列产生的压降更低,即具有更高的品质因数;在整个过滤过程中,
石油管道中的蜡沉积被认为是油田开采过程中最严重的问题之一,针对特定原油使用不同的清蜡剂是解决该问题常用的方法.然而,原油组分的复杂性和各种清蜡剂之间的适用性是目前清蜡剂筛选和评价中存在的主要问题.如何在不同的作业区或井场选用合适的清蜡剂既是集输工艺的需要也是成本控制的关键.为了分析评价长庆集团清蜡剂的使用效果,作者基于现场实验结果,对长庆某作业区的原油性质、原油蜡含量、蜡样碳含量、溶蜡速率、清蜡剂结构进行分析.研究表明,长庆油田原油含蜡量较高,蜡样碳数分布较广且重质组分含量高,而油基清蜡剂11和16,清防
通过低碳高Nb+Mo/Ni合金设计理念,采用粗轧低温快轧技术,成功开发出典型的针状铁素体型X80级Φ1422 mm×25.4 mm大直径超厚螺旋缝埋弧焊管用热轧卷板.在制管过程中采用低残余应力成型技术,结合适度增加水压压力,管体内表面和外表面环向应力都低于80 MPa,并通过试验确定了厚壁管材焊接过程中的最佳热输入线能量.对试制后的X80级Φ1422 mm×25.4 mm螺旋埋弧焊管进行理化性能检测,结果显示,管体屈服强度为556~615 MPa,抗拉强度为648~655 MPa,焊接接头拉伸强度≥669
生物炭因具有独特的表面性质、易修饰的官能团、良好的导电性和化学稳定性常被用作光催化剂的载体.将光催化剂与生物炭复合制备得到生物炭基光催化剂,不仅将二者的优势有效结合起来,同时得到的复合材料在官能团、孔性能、表面活性位点、催化降解能力等方面均有显著改善.生物炭良好的导电性提高了光催化过程中电子-空穴对分离的效率,丰富的表面官能团能够吸附固定不同的污染物,便于其光催化去除.本文综述了生物炭基光催化剂的各种制备工艺、催化性能及其对废水处理的影响,详细地介绍了溶胶-凝胶、超声、水热/溶剂热、水解、焙烧、沉淀和热缩
为了研究管道内检测器运行时的非线性动力学特性,基于耦合欧拉-拉格朗日(CEL)方法,建立了管道内检测器运行的流-固耦合模型,采用Mooney-Rivlin模型描述橡胶皮碗超弹性、非线性行为.对内检测器在管内运行经过管道局部变形时的复杂行为进行求解和分析,获取了管道内检测器的速度、加速度、压力差、接触面积、摩擦力曲线以及最大应力和真实应变图,对内检测器皮碗非线性动力学特性进行分析.在计算中考虑了检测器的惯性影响以及摩擦力的作用,使得该流-固耦合模型更加接近现实工况,可对优化内检测器结构设计和使用提供理论依据
火焰合成法是指前驱物在燃烧器中经过一系列复杂的物理化学反应过程得到产物纳米颗粒的方法,具有一步合成的优点,是现代工业规模化制备高性能材料的一种重要方法.火焰合成过程机理涉及物质的相态变化、颗粒生长团聚和热量质量交换等复杂过程,探究火焰合成过程是实现产物颗粒调控的关键.本文对火焰合成过程中的关键部分,如前驱物、为合成过程提供高温氧化环境的燃烧器、产物颗粒等进行分析,阐述了火焰气溶胶技术中颗粒的生长及转变路径、不同燃烧器的结构及其温度场、流场特点,并分析了不同燃烧器合成的纳米TiO2进行了粒径及晶型特点的研究
微反应技术在化工过程强化领域已得到广泛应用,尤其适用于快速复杂竞争反应体系.对于液-液两相快速竞争反应,反应过程受传质限制,显著影响反应转化率和收率.本文开发了一种新型的微孔射流毛细管反应器(MJCM),采用微孔射流强化进口处液-液两相传质性能,分别采用水-苯甲酸-煤油体系和水-氢氧化钠-甲苯-苯甲酸-氯乙酸乙酯体系研究了不同操作参数(流量、流量比、表面活性剂浓度、温度)和结构参数(孔径、管长)下液-液两相传质特性和反应选择性,并获得了舍伍德数Sh的关联式.结果表明:随着两相流量的增加,传质效率E呈下降趋
为提高腐蚀管道剩余强度的预测精度,深入分析影响管道剩余强度的主要因素,通过广义回归神经网络(GRNN)对剩余强度进行有效预测,采用改进的布谷鸟搜索算法(ICS)对光滑因子进行寻优,建立了基于ICS-GRNN的管道剩余强度预测模型,并与其他模型进行了对比.结果表明,ICS算法较CS算法提前88次迭代达到收敛条件,具有更快的迭代速度;ICS-GRNN模型的平均相对误差和希尔不等系数均最小,分别为1.92%和0.43,与其他模型相比,预测精度和鲁棒性最好,预测时间最短.研究结果可为进一步确定腐蚀管道的后续承载力
以沉浸式换热器为研究对象,通过壁面加载超声波,比较了超声波振幅、换热器入口流速和管外压力对超声波效应及强化传热效果的影响.结果表明:超声波振幅由20μm增大至35μm时,表面对流传热系数增幅由15.67%增至26.71%;管外压力由0.1MPa增大至1.0MPa时,表面对流传热系数增幅由20.95%增至48.43%;入口流速由1.0m/s降低至0.05m/s时,表面对流传热系数增幅由1.76%增至39.01%.增大超声波振幅、环境压力和减小介质流速均能增强超声波声流现象和空化效应,有效提高超声波强化传热效
多孔泡沫材料作为新型气液传质元件已被证明对精馏过程具有强化作用,但其强化作用的关键机制尚不清晰而亟待研究.已有研究从流体力学方面阐述多孔泡沫材料对气液传质的强化机理,多孔泡沫材料对热力学性能方面是否存在影响仍缺乏定论.本文设计了泡沫碳化硅对二元体系气液相平衡影响的实验,通过动态法的气液双循环相平衡釜装置测定了泡沫碳化硅以及刻蚀形成表面微孔的泡沫碳化硅存在时乙醇/乙酸乙酯、乙醇/环己烷二元体系的气液相平衡数据,旨在基于不同孔径的泡沫碳化硅构造曲率气液界面的理论探究多孔泡沫材料孔径大小对气液相平衡的影响.本文