论文部分内容阅读
I/O调度算法对磁盘阵列(RAID)性能具有至关重要的影响。虽然已有很多典型的I/O调度算法在一定负载情况下可获得较好的性能,但很难有哪一种算法在各种负载情况下均能获得很好的性能。本文提出了一种智能RAID控制模型,结合CA.5决策树和AdaBoost算法实现负载自动分类,根据负载变化和性能反馈情况动态调整I/O调度策略,实现面向应用需求的自治调度。模拟实验结果表明,自适应调度算法具有较好的适应性,在各种负载情况下优于现有的I/O调度算法,尤其适用于多线程混合负载环境的I/O性能优化。