论文部分内容阅读
为解决网络样本标注的难题,实现多种网络流量环境中的主动学习,提出一种基于支持向量机后验概率的网络流量识别方法。结合支持向量机输出和Sigmoid函数拟合样本所属类别后验概率,用其中较大的2类概率信息熵值衡量样本影响分,借助支持向量机和不确定性采样策略实现主动学习过程,形成流量识别模型。实验结果表明,该方法能取得较好的识别效果。