Characterization and Methanol Adsorption of Walnut-shell Activated Carbon Prepared by KOH Activation

来源 :武汉理工大学学报(材料科学版)(英文版) | 被引量 : 0次 | 上传用户:asdf1aasdf
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Walnut-shell activated carbons (WSACs) were prepared by the KOH chemical activation. The effects of carbonization temperature, activation temperature, and ratio of KOH to chars on the pore development of WSACs were investigated. Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) were employed to characterize the microstructure and morphology of WSACs. Methanol adsorption performance onto the optimal WSAC and the coal-based AC were also investigated. The results show that the optimal preparation conditions are a carbonization temperature of 700℃, an activation temperature of 700℃, and a mass ratio of 3. The BET surface area, the micropore volume, and the micropore volume percentage of the optimal WASC are 1636 m2/g, 0.641 cm3/g and 81.97%, respectively. There are a lot of micropores and a certain amount of meso- and macropores. The characteristics of the amorphous state are identified. The results show that the optimal WSAC is favorable for methanol adsorption. The equilibrium adsorption capacity of the optimal WSAC is 248.02mg/g. It is shown that the equilibrium adsorption capacity of the optimal WSAC is almost equivalent to that of the common activated carbon. Therefore the optimal WSAC could be a potential adsorbent for the solar energy adsorption refrigeration cycle.
其他文献
The dynamic tensile behaviors of a newly developed Ti-6Al-2Sn-2Zr-3Mo-1Cr-2Nb-Si alloy (referred as TC21 in China) over a wide range of strain rates from quasi-static to dynamic regimes (0.001-1200 s-1) at different temperatures were experimentally invest
The effect of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties and microstructure of sulfur aluminate cement (SAC) composites was investigated. The dispersed MWCNTs were added into SAC in various weight contents.The results of mechanica
In order to obtain the suitable phase change material (PCM) with low phase change temperature and improve its heat transfer rate, experimental investigation was conducted. Firstly, different mass ratios of lauric acid (LA) and stearic acid(SA) eutectic mi
To reveal the complicated mechanism of the multicomponent mass transfer during the growth of ternary compound semiconductors,a numerical model based on Maxwell-Stefan equations was developed to simulate the Bridgman growth of CdZnTe crystal.The Maxwell-St
A composite material (Fe3O4/Coke) using coke supported Fe3O4 magnetic nanoparticles was successfully prepared via an in-situ chemical oxidation precipitation method and characterized by SEM, XRD, Raman, and FTIR. The results showed that the Fe3O4 nanopart
ZnMn2O4 thin films were deposited by a sol-gel technique onto a p+-Si substrate, and a RRAM device with the Ag/ZnMn2O4/p+-Si structure was fabricated. The microstructure of ZnMn2O4 films and the resistive switching behavior of Ag/ZnMn2O4/p+-Si device were
By using the wastes fish skin of sturgeon processed as a raw material,a macromolecule biomaterial of collagen was extracted.Acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) were successfully isolated from the skin of hybrid sturgeon with two
Silver coatings on the exterior surface of monolithic activated carbon (MAC) with different morphology were prepared by directly immersing MAC into [Ag(NH3)2]NO3 solution. Acid and base treatments were employed to modify the surface oxygenic groups of MAC