新闻专题阶段性摘要的生成研究

来源 :计算机应用研究 | 被引量 : 0次 | 上传用户:yaoyaosara
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
新闻专题的阶段性摘要对了解专题的动态演化、勾勒专题的发展轮廓等都能提供较高的参考价值,一定程度上弥补了专题内容太多而不便阅读的缺憾。以"马航MH370航班失联"专题为研究对象,探讨了新闻专题阶段性摘要的生成算法。首先利用主题抽取技术对各新闻文档进行主题抽取,完成文档集到主题集的转换;然后借助话题检测与追踪技术对主题集进行基于时间流的双向聚类和正逆向结果交集的再聚类;最终根据话题聚类的结果选择对应文档的主题生成新闻专题的阶段性摘要。实验证明,该方法能够取得较好的Rouge召回率。
其他文献
传统的人耳识别算法在人耳图像遮挡、噪声和人耳多姿态变化中表现出低识别率,近年来稀疏表示在模式识别领域中取得了很好的成果。决定稀疏分类器识别精确度的因素主要是稀疏解的稀疏度,而稀疏度的估计就是稀疏向量中非0元素的估计,即向量L_0范数。因此在人耳稀疏分类算法的研究中引入L_0范数稀疏约束。采取基于SRC(sparse representation-based classification)稀疏模型,
传统的基于项目的协同过滤算法离线计算项目相似性,提高了在线推荐速度,但该算法仍然不能解决数据稀疏性所带来的问题,计算出的项目相似性准确度较差,影响了推荐质量。针对这一问题,提出了一种结合类别偏好信息的协同过滤算法。定义了类别偏好相似性,采用类别偏好相似性方法为目标项目找出一组类别偏好相似的候选邻居,在候选邻居中搜寻最近邻,排除了与目标项目共同评分较少项目的干扰,从整体上提高了最近邻搜寻的准确性。在
中文微博的评价对象抽取作为中文微博情感分析的基础任务,受到研究者的广泛关注,有着重要的研究价值。结合微博文本的特点,对微博文本进行预处理,利用句法分析构建包括名词、名词短语、微博话题在内的评价对象候选集,再分别利用SVM模型、加权模型实现多特征融合的筛选候选评价对象方法,所用特征包括语义角色信息、最小距离和词频。算法经实验证明有效,在对候选评价对象进行筛选后,采用SVM模型的F值达到0.357 3
为了更加准确地表征功放的记忆效应,提出了一种新的动态x参数功放模型。该模型是对动态x参数模型的一种改进,利用FF(feed—forward)模型技术提取出表征功放记忆效应的核函数,并将
为了提高多维分类的执行效率,同时保持高的预测准确性,提出了一种基于贝叶斯网络的多维分类学习方法。将多维分类问题描述为条件概率分布问题。根据类别向量之间的依赖关系建