论文部分内容阅读
设K是任意实Banach空间X中的闭凸子集,T:K→K是Lipschitz严格伪压缩映象,在没有假设∑n=0^∞ αnβn〈∞之下,本文证明了由xa+1=(1-αn)xn+αnTyn+un与yn=(1-βn)xn+βnTxn+vn,任意n∈N,生成的带误差的Ishikawa迭代序列强收敛到T的唯一不动点,并给出了更为一般的收敛率估计:若un=vn=0,任意n∈N,则有||xn+1-x^*||≤(1-γn)||xn-x^*||≤…≤∏j=0^n(1-γj)||x0-x^*||,其中{γn}是(0,1)中的序