基于分数阶全变分正则化的超分辨率图像重建

来源 :计算机科学 | 被引量 : 0次 | 上传用户:xunmengya
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
从退化的低分辨率图像重建得到高分辨率图像的本质是一病态逆问题,针对该问题,通过添加正则项进行处理。在使用传统的全变分(TV)的基础上,添加了分数阶全变分(FOTV)作为另一正则项来约束解空间。分数阶全变分正则项的使用可以更好地重建图像的细节纹理信息,弥补了全变分算子在平滑区域易出现阶梯效应的缺陷。利用交替方向乘子(ADMM)算法将问题划分为子问题,将全变分和分数阶全变分算子作为循环矩阵,通过傅里叶变换将其对角化,降低了计算的复杂程度。实验结果表明,与已有的方法相比,所提方法有效地避免了阶梯效应的产生,较好
其他文献
分类变量的相似度分析是数据挖掘任务中的一个重要环节,现有的分类变量相似度算法中存在忽视变量差异、受不均衡分布影响严重、无法应用于混合数据集等缺点。为克服以上缺点,
脑网络作为复杂网络分析方法在神经影像领域的应用已得到广泛的认可。研究发现脑网络中的节点规模对网络的拓扑属性会产生重要的影响。利用静息态功能影像数据,在5种不同的节
针对基于密度峰值的聚类算法(CFSFDP)无法自行选择簇中心点的问题,提出了CFSFDP改进算法。该算法采用簇中心点自动选择策略,根据簇中心权值的变化趋势搜索"拐点",并以"拐点"之前的