Microsphere-assisted, nanospot, non-destructive metrology for semiconductor devices

来源 :光:科学与应用(英文版) | 被引量 : 0次 | 上传用户:gaoxuan1234
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
As smaller structures are being increasingly adopted in the semiconductor industry, the performance of memory and logic devices is being continuously improved with innovative 3D integration schemes as well as shrinking and stacking strategies. Owing to the increasing complexity of the design architectures, optical metrology techniques including spectroscopic ellipsometry (SE) and reflectometry have been widely used for efficient process development and yield ramp-up due to the capability of 3D structure measurements. However, there has been an increasing demand for a significant reduction in the physical spot diameter used in the SE technique;the spot diameter should be at least 10 times smaller than the cell dimension (~30 × 40μm2) of typical dynamic random-access memory to be able to measure in-cell critical dimension (CD) variations. To this end, this study demonstrates a novel spectrum measurement system that utilizes the microsphere-assisted super-resolution effect, achieving extremely small spot spectral metrology by reducing the spot diameter to~210 nm, while maintaining a sufficiently high signal-to-noise ratio. In addition, a geometric model is introduced for the microsphere-based spectral metrology system that can calculate the virtual image plane magnification and depth of focus, providing the optimal distance between the objective lens, microsphere, and sample to achieve the best possible imaging quality. The proof of concept was fully verified through both simulations and experiments for various samples. Thus, owing to its ultra-small spot metrology capability, this technique has great potential for solving the current metrology challenge of monitoring in-cell CD variations in advanced logic and memory devices.
其他文献
Implantable image sensors have the potential to revolutionize neuroscience. Due to their small form factor requirements;however, conventional filters and optics cannot be implemented. These limitations obstruct high-resolution imaging of large neural dens
Liquid crystal polarization optics based on photoalignment technique has found pervasive applications in next- generation display platforms like virtual reality and augmented reality. Its large-scale fabrication, however, remains a big challenge due to th
Revealing the photoluminescence (PL) origin and mechanism is a most vital but challenging topic of carbon dots. Herein, confined-domain crosslink-enhanced emission (CEE) effect was first studied by a well-designed model system of carbonized polymer dots (
为了延长车辆全面检查和转向架检查周期,日本东海铁路客运公司在实施常规检查的基础上采用X射线衍射法来评价轴承的健全性.采用这种新方法可以把握目视检查无法判断的轴承老化状态.通过取得的大量现场数据证明了利用X射线衍射法进行评价是有效的.
Despite the considerable effort, fast and highly sensitive photodetection is not widely available at the low-photon-energy range (~meV) of the electromagnetic spectrum, owing to the challenging light funneling into small active areas with efficient conver
变压器是交流电压转换必不可少的装置,在降低重量和减小体积上仍有改进的余地,特别是低频变压器,其体积较大.如今,半导体技术的进步使变压器能够在任意频率下工作,其体积变小、重量变轻.上世纪90年代左右,日本采用半导体技术研发的电力电子变压器用作辅助电源装置的隔离型DC-DC变换器,2000年以后欧洲开发了用于主回路的电力电子变压器.介绍几种电力电子变压器,抛砖引玉,以期待未来能够促进这种技术的进一步发展.
Manipulation of the light phase lies at the heart of the investigation of light-matter interactions, especially for efficient nonlinear optical processes. Here, we originally propose the angular engineering strategy of the additional periodic phase (APP)
Metasurfaces have proven themselves an exotic ability to harness light at nano-scale, being important not only for classical but also for quantum optics. Dynamic manipulation of the quantum states is at the heart of quantum information processing;however,
Impurity doping is an effective approach to tuning the optoelectronic performance of host materials by imparting extrinsic electronic channels. Herein, a family of lanthanide (Ln3+) ions was successfully incorporated into a Bi:Cs2AgInCl6 lead-free double-
Direct generation of chirp-free solitons without external compression in normal-dispersion fiber lasers is a long-term challenge in ultrafast optics. We demonstrate near-chirp-free solitons with distinct spectral sidebands in normal- dispersion hybrid-str