论文部分内容阅读
决策树是一种采用分治策略的聚类分析方法,构建决策树的关键是选择合适的属性。传统的决策树通常从最大化信息熵的角度来构造,不能对属性的分类能力进行足够好的区分。对传统的决策树生成算法的不足,本文提出了一种基于马氏距离的决策树生成算法。算法使用马氏距离来区分不同特征属性子集的分类能力。试验结果表明,基于度量的决策树的性能优于传统的决策树。