论文部分内容阅读
云计算为大规模科学工作流应用的执行提供了更高效的运行环境。为了解决云环境中科学工作流调度的代价优化问题,提出了一种基于协同进化的工作流调度遗传算法CGAA。该算法将自适应惩罚函数引入严格约束的遗传算法中,通过协同进化的方法,自适应地调整种群个体的交叉与变异概率,以加速算法收敛并防止种群早熟。通过4种科学工作流的仿真实验结果表明,CGAA算法得到的调度方案在满足工作流调度截止时间约束与降低任务执行代价的综合性能方面优于同类型算法。