论文部分内容阅读
稀疏流形聚类和嵌入算法通过仿射空间中的稀疏表示获得稀疏系数,并能由稀疏系数自适应地选取来自同一流形的数据点.但稀疏流形聚类和嵌入算法没有直接的投影矩阵,且为非监督学习方法.针对稀疏流形聚类和嵌入算法算法的不足,提出一种新的监督稀疏流形嵌入算法.该方法首先在仿射空间中采用稀疏优化法得到稀疏系数,然后根据稀疏系数构建相似权值,并在权值中嵌入样本类别信息,增加同类数据间的聚集性,并在低维嵌入空间中保持这种相似性不变,提取鉴别特征来提升分类性能.实验结果表明:该文方法不仅能保持数据的稀疏特性,而且通过利用样本数据