论文部分内容阅读
通过支持向量机与相空间重构、小波分析、粒子群算法等的组合应用,充分考虑大坝原型监测数据特征,开展了大坝变形性态预测模型研究。为提升模型的抗噪能性,首先利用小波分析工具对监测数据序列进行时频分解,对分解所得的高频子序列实施阈值去噪处理;进而在借助混沌相空间重构技术,计算各子序列延迟时间与嵌入维数的基础上,重构各子序列的相空间。依据去噪和重构后的变形子序列,建立大坝变形性态支持向量机预测模型。考虑到支持向量机惩罚因子与核函数参数对模型预测精度影响显著的特点,引入粒子群算法,并通过支持向量机的参数寻优,进一步提