论文部分内容阅读
针对现有识别方法对交通标志的识别精度和算法效率不高的问题,提出了一种基于网格搜索的主成分分析-支持向量机(PCA-SVM)道路交通标志识别方法。该方法首先采用主成分分析(PCA)法对交通标志进行降维处理,提取出交通标志的主元特征,然后利用网格搜索法(GS)对支持向量机(SVM)进行参数优化,最后利用参数优化好的支持向量机分类器实现对交通标志的识别。通过实验仿真,并与现有的其他交通标志识别算法进行分析对比,实验结果表明,本文方法在保证较高识别精度的同时,算法效率得到显著提高。