论文部分内容阅读
为了同时考虑直方图的概率信息和类内灰度级的均匀性,提出了基于灰度级-梯度二维直方图的Shannon灰度熵及Tsallis灰度熵阈值选取方法.给出了Shannon灰度熵和Tsallis灰度熵的定义及其一维阈值选取方法,导出了二维Shannon灰度熵及Tsallis灰度熵阈值选取公式及其快速递推算法,并利用混沌粒子群算法寻求两种阈值选取方法的最佳阈值.实验结果表明,与基于改进的二维最大熵及粒子群递推的阈值选取方法相比,所提出方法的分割图像能更准确地反映原始图像的边缘、纹理及细节信息.