论文部分内容阅读
传统的高光谱遥感影像分类算法侧重于光谱信息的应用。随着高光谱遥感影像的空间分辨率的增加,高光谱影像中相同类别的地物在空间分布上呈现聚类特性,将空间特性有效地应用于高光谱遥感影像分类算法对分类精度的提升非常关键。但是,高光谱影像的高分辨率提供空间聚类特性的同时,在不同地物边缘处表现出的差异性更加明显,若不对空间邻域像素进行甄选,直接将邻域光谱信息引入,设计空谱联合稀疏表示进行图像分割,则分类误差较大,收敛速度大大降低。将光谱角引入空谱联合稀疏表示图像分类理论中,提出了一种基于邻域分割的空谱联合稀疏表示分类算