论文部分内容阅读
针对一般建筑工程估价问题的复杂性,融合粗糙集理论、粒子群算法和神经网络算法的优势,提出了一种新的建筑工程估价模型——基于粗糙集理论、改进粒子群算法和神经网络算法集成的建筑工程估价模型。利用粗糙集理论对影响建筑工程造价的因素进行约简,优化BP神经网络的输入变量;利用一种带收缩因子的改进粒子群算法优化BP神经网络初始权重和阈值。该方法有效地增强了BP算法对非线性问题的处理能力,同时提高了BP算法的收敛速度和搜索全局最优值的能力。选取湖南某市工-程案例进行实证分析。研究结果表明,新的算法模型能够以工程特征为依托