论文部分内容阅读
针对蛋白质质谱数据在降维、分类及生物标记物识别过程中存在的问题,提出一种基于遗传算法的特征选择方法,介绍几种常用的相关策略,包括基于排列和精英保留的随机通用采样选择策略和基于自适应变肄率的均匀变异策略,给出2个适应度函数——封装器函数与多变元筛选器函数,将它们引入遗传算法中,并进行性能测试与比较。实验结果表明,基于封装器的遗传算法性能优于其他特征选择算法,而基于多变元筛选器的遗传算法性能优于单变元筛选器算法。