Tuning electrochemical transformation process of zeolitic imidazolate framework for efficient water

来源 :能源化学 | 被引量 : 0次 | 上传用户:qzspk
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Metal-organic frameworks (MOFs) have been widely studied as efficient electrocatalysts for water oxida-tion due to their tunable structure and easy preparation.However,the rational design of MOFs-based electrocatalysts and fundamental understanding of their structural evolution during oxygen evolution reaction (OER) remain critical challenges.Here,we report a facile approach to tune the structural trans-formation process of the Co-based zeolitic imidazolate framework (ZIF) during the OER process by using water molecules as a vacancy promoter.The modified ZIF catalyst accelerates the structural transforma-tion from MOF precursor to electrochemical active species and simultaneously enhances the vacancy density during the electrochemical activation process.The optimized electrocatalyst exhibits an extre-mely low overpotential 175 mV to deliver 10 mAcm-2 and superior durability (100 h) at 100 mA cm-2.The comprehensive characterization results reveal the structural transformation from the initial tetrahedral Co sites to cobalt oxyhydroxide (CoOOH) and the formation process of oxygen vacancies (CoOOH-VO) at a high anodic potential.These findings represent a promising way to achieve highly active MOF-based electrocatalysts for water oxidation.
其他文献
A large database is desired for machine learning (ML) technology to make accurate predictions of mate-rials physicochemical properties based on their molecular structure.When a large database is not avail-able,the development of proper featurization metho
Ni-rich layered cathodes (LiNixCoyMnzO2) have recently drawn much attention due to their high specific capacities.However,the poor rate capability of LiNixCoyMnzO2,which is mainly originated from the two-dimensional diffusion of Li ions in the Li slab and
Covalent organic frameworks (COFs) are emerging as powerful electrochemical energy storage/conversion materials benefiting from the controlled pore and chemical structures,which are usually determined by the regulation of the molecular building blocks,In
Proton exchange membrane fuel cells (PEMFCs) are regarded as one of the most promising clean energy technology because of their high energy density,silent emission-free operation,and wide applications [1].Recently,anion exchange membrane fuel cells(AEMFCs
The high degree of crystallinity of discharging intermediates of Li-S batteries (Li2S2/Li2S) causes a severe capacity attenuation at low temperatures.Herein,a sulfur-rich polymer is fabricated,which enables all the discharging intermediates to exist in an
Rechargeable aluminum batteries are believed as a promising next-generation energy-storage system due to abundant low-cost Al sources and high volumetric specific capacity.The Al-storage cathodes,how-ever,are plagued by strong electrostatic interaction be
Practical implementations of rechargeable lithium (Li) metal batteries have long been plagued by multi-ple problems of Li anode,such as Li dendrite growth,large volume change,low Coulombic efficiency.Here,we report a protein-enabled film that can provide
The replacement of small cations with bulkier organic cations containing long alkyl chains or benzene rings to form a thin two-dimensional (2D) perovskite passivation layer on three-dimensional (3D) per-ovskite (2D/3D) has become a promising strategy for
Perovskite BaTaO2N (BTON) is one of the most promising photocatalysts for solar water splitting due to its wide visible-light absorption and suitable conduction/valence bands,but it still confronts the chal-lenge of high defect density causing decreased c
Li-CO2 batteries provide an attractive and potential strategy for CO2 utilization as well as energy conversion and storage with high specific energy densities.However,the poor reversibility caused by the decomposition obstacles of Li2CO3 and C products is