融合检测与跟踪的半自动视频目标标注

来源 :计算机工程与应用 | 被引量 : 1次 | 上传用户:fox542
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对视频图像连续帧间的目标具有冗余性,采用手动标注方式耗时耗力的问题,提出一种融合检测和跟踪算法的视频目标半自动标注框架。利用手动标注的样本离线训练改进YOLO v3模型,并将该检测模型作为在线标注的检测器。在线标注时在初始帧手动确定目标位置和标签,在后续帧根据检测框与跟踪框的IOU(IntersectionOver-Union)值自动确定目标的位置,并利用跟踪器的响应输出判断目标消失,从而自动停止当前目标标注。采用一种基于目标显著性的关键帧提取算法选择关键帧。采用自建舰船目标数据集进行了改进YOL
其他文献
针对雾天车牌图像模糊、车牌识别率低的问题,给出了车牌图像色彩迁移与正则化约束去雾算法。算法主要包含色彩迁移去雾和文本修复两个模块。采用MKL(Monge-Kantorovitch Linear Colour Mapping)色彩迁移算法,恢复雾天车牌颜色信息实现去雾;利用车牌的文本像素的强度和梯度特征对车牌图像进行正则化约束,实现车牌中文本的修复。实验结果表明,无论针对合成车牌雾图还是自然车牌雾图