论文部分内容阅读
建立了基于BP神经网络的高炉铁水硅含量预测模型,给出了学习参数的确定方法,BP网络的学习算法和步骤,并利用湘钢4#高炉一段连续时期内正常生产的数据经过时序化、归一化处理后进行训练和仿真,结果表明,高炉冶炼在运用了先进的BP人工神经网络预测模型后,能预测[Si]的高低,判断炉温走势,调控炉温;并能同时监测多个主要控制对象,对于了解高炉各方面的状态具有指导性的作用。