论文部分内容阅读
针对图像检索中存在的"语义鸿沟"问题,提出一种对连续视觉特征直接建模的图像自动标注方法.首先对概率潜语义分析(PLSA)模型进行改进,使之能处理连续量,并推导对应的期望最大化算法来确定模型参数;然后根据不同模态数据各自的特点,提出一个对不同模态数据分别处理的图像语义标注模型,该模型使用连续PLSA建模视觉特征,使用标准PLSA建模文本关键词,并通过不对称的学习方法学习2种模态之间的关联,从而能较好地对未知图像进行标注.通过在一个包含5000幅图像的标准Corel数据集中进行实验,并与几种典型的图像标