论文部分内容阅读
错综复杂的土地利用模式和破碎的地物斑块制约了土地利用/覆被分类的精度和效率。一方面,混合像元模糊了地物的光谱信息,影响了分类精度。另一方面,如何高效利用地物的光谱、形状和纹理特征是当前土地利用/覆被分类的研究热点。为了提高基于遥感技术的土地利用/覆被分类精度,该研究基于Sentinel-2A遥感影像,开展融合光谱混合分解与面向对象的土地利用/覆被分类研究。首先,基于地物的光谱、形状和纹理特征,在3个分割尺度通过NDWI(Normalized Difference Water Index)、NDVI(