论文部分内容阅读
数据挖掘技术能够从大量数据中发现潜在知识,软计算是创建智能系统的有效方法,本文将两者结合,完成电力预测过程的两个主要任务:负荷坏数据处理和多因素负荷预测模型的建立.通过对Kohonen网聚类挖掘和BP网分类挖掘的效果分析,设计由这两种网络组合而成的神经网络模型,完成坏数据辨识和调整的任务;以模糊推理系统为基础构建多因素负荷预测模型,本文采用CART分类挖掘技术解决模糊结构辨识中的两个难点问题:输入空间划分和输入变量选择,在此基础上设计ANFIS网络进行参数辨识.良好的实例分析效果说明,数据挖掘思想和软计算